SM3H HW11.4 Eliminating the Parameter

When a curve is defined parametrically, it is sometimes possible to eliminate the parameter and find a way to define the curve with one parameter being a function of the other. While this will result in a function that no longer has a direction based on the original independent variable, the relationship between parameters will remain.

The essential strategy for eliminating the parameter is:

- Solve for the independent variable in one of the parameters.
- Substitute the value found above into the independent variable in the other parameter.
- Simplify in a manner that doesn't cause loss of any portion of the original curve to find y(x).

Example 1: Eliminate the parameter t from the definition of $a(x, y) = \langle x(t), y(t) \rangle$ $x(t) = 4t - 1, y(t) = 2t + 3, -\infty \langle t \langle \infty \rangle$

We select $x(t)$ as the parameter to use first so that we can substitute into $y(t)$ to find $y(x)$.			
Step 1: Solve $x(t)$ for t .	x = x + 1 = 0.25x + 0.25 =	$\begin{array}{l} 4t - 1 \\ 4t \\ t \end{array}$	
Step 2: Substitute t into $y(t)$.	<i>y</i> =	2(0.25x + 0.25) + 3	
Step 3: Simplify carefully.		0.5x + 0.5 + 3 0.5x + 3.5	

So, the graph of y(x) = 0.5x + 3.5 should contain the same points as the original parametric curve, a(x, y). We'll no longer be able to use *t*-values to determine the motion along the curve, but we have an easier representation to use for graphing.

Example 2: Eliminate the parameter *t* from the definition of $a(x, y) = \langle x(t), y(t) \rangle$ $x(t) = t^2 - 2, y(t) = 5t, -\infty < t < \infty$

We select $x(t)$ as the parameter to use first so that we can substitute into $y(t)$ to find $y(x)$.			
Step 1: Solve $x(t)$ for t .	$x = x + 2 = \pm \sqrt{x + 2} =$	$ \begin{array}{c} t^2 - 2 \\ t^2 \\ t \end{array} $	
Step 2: Substitute t into $y(t)$.	<i>y</i> =	$5(\pm\sqrt{x+2})$	
Step 3: Simplify carefully.	<i>y</i> =	$\pm 5\sqrt{x+2}$	
We can't remove the \pm without removing some of the curve!			

When we have t contained in a trig function, it is easier to make appropriate substitutions into $\cos^2 t + \sin^2 t = 1$ than using inverse trig to solve for t. We typically stop simplifying these equations once they are in the standard form for a circle or conic section.

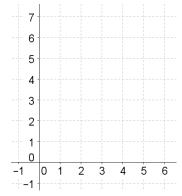
Step 1: Use $\cos^2 t + \sin^2 t = 1$.	$\cos^2 t + \sin^2 t =$	1
Step 2: Substitute <i>x</i> into cos <i>t</i> and <i>y</i> into sin <i>t</i> .	$x^2 + y^2 =$	1 This is the equation of a circle, so more simplification isn't necessary unless it helps to graph.
Step 3: Simplify carefully.	$y^2 = y = y = y$	$\frac{1-x^2}{\pm\sqrt{1-x^2}}$

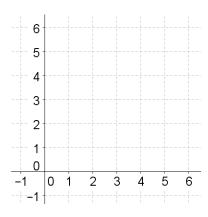
Example 3: Eliminate the parameter t from the definition of $a(x, y) = \langle x(t), y(t) \rangle$ $x(t) = \cos t, \ y(t) = \sin t, \ -\infty < t < \infty$

HW11.4

Eliminate the parameter and write an equation for the curve in the form of y = f(x). Then, sketch the curve.

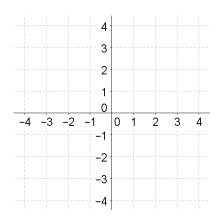
1)
$$a = \langle t + 3, 4 - t \rangle$$
 2) $b = \langle t^2, 3 - t \rangle$

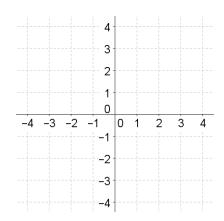




3)
$$c = <\frac{5}{t}, t-1 >$$

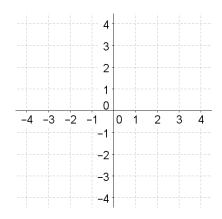
4) $d = < \sin t, \cos t >$

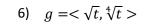


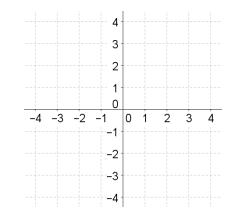


5) $f = < \ln t, 2t >$

7) $h = <\cos(t) + 2,\sin(t) - 3 >$







8) $j = <\sin(t) - 3, \cos(t) + 3 >$

